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FOREWORD

This report is submitted to the National Aeronautics and Space Administration,
Lewis Research Center, by the Lockheed-Georgia Company in accordance
with the requirements of Article XXI, NASA Contract NAS 3-10298.
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LOW TEMPERATURE ANNEALING OF IRRADIATED
COMMERCIALLY PURE TITANIUM

by
LOCKHEED NUCLEAR PRODUCTS
C. A. Schwanbeck, Project Manager

1 SUMMARY

This report describes the results obtained in an experimental study of the effects of
post-irradiation annealing at cryogenic temperatures on the tensile properties of
commercially pure titanium (Titanium 55A-Annealed). Test specimens were exposed

to fluences of 6 x 1017 n/cm2, with neutrons energies greater than 0.5 MeV

(80 femtojoules), at 17°K. The irradiated specimens were tested after annealing
periods of one hour (3.6 x 103 sec) at 78°K and 178°K. Parallel sample lots were
tested at the annealing temperature and after recooling to 17°K. Additional specimens
were tested at 17°K following irradiation at 17°K with no post-irradiation annealing
period.

The sample lots tested at 17°K following post-irradiation annealing showed that a
pronounced reduction of the ultimate tensile strength occured at temperatures below
78°K, while a less pronounced effect on the tensile yield strength occurred over
the entire annealing temperature range.

The sample lots tested at the post-irradiation annealing temperature showed a
gradual reduction in the irradiation effect on the ultimate tensile strength over the
range of test temperatures. This reduction was substantial while there was relatively
little reduction in the yield strength.

The residual effects of irradiation on the yield strength after annealing at 78°K and
178°K are, within the limits of experimental accuracy, independent of testing
temperature . This contrasts with the results from aluminum similarly investigated

in an earlier program.



PRECEDING PAGE BLANK NOT FILMED.
2 INTRODUCTION

The concept of using hydrogen, stored in the liquid state, as the propellant for
nuclear rockets to be used on trans~lunar missions is attractive because of the
high specific impulses obtainable. Engineers responsible for the design of this
sophisticated hardware require a knowledge of the combined effects of neutron
irradiation and cryogenic temperatures on structural materials. Since lattice
defects introduced by neutron irradiation are mobile even at liquid hydrogen
temperature (20.5°K), irradiation and testing must be conducted at a temperature
at least this low to observe effects which might occur in structural components of
nuclear rockets.

Earlier test programs, conducted at the Plum Brook Reactor Facility of the NASA
Lewis Research Center under Confracts NASw=114 and NAS3-7985, studied the
following effects:

The effect of fast neutron fluences* of 1017 n/cm2 at
17°K on the tensile properties of thirty-three (33) metals
and alloys including titanium alloys (ref. 1)

The effect of fluences up to 1018 n/cm2 at 17°K on the
tensile properties of commercially pure titanium and
several titanium alloys (ref. 2)

The effect of fast neutron fluences of 1017 n/cm2 at 17°K
on the low-cycle fatigue properties of commercially pure
titanium and two alloyed titaniums (ref. 2)

The effects of irradiation temperature and post-irradiation
annealing on high purity aluminum (ref. 2).

The results obtained in the irradiation effects studies on Titanium 55A (annealed)
conducted in the earlier programs (refs. 1 and 2) showed that a small but measurable
increase in strength parameters exhibited a direct dependence on irradiation level
for specimens irradiated and tested at 17°K. This was accompanied by a slight
reduction in the ductility parameters. An increase in the ny/FfU ratio was an
observable radiation effect.

As a result of these programs, a further series of tests was authorized by Contract
NAS3-10298. One series of tests from this program, a study of the effects of post-
irradiation annealing on unalloyed titanium (Titanium 55A), has been completed.
These tests included tensile tests on Titanium 53A, somple lots of three specnmens,
after irradiation to a fluence of 6 x 10"/ n/cm* at 17°K foliowed by anneaiing
periods of one hour (3.6 x 103 sec) at 78°K and 178°K respectively. Parallel
sample sets were tested at the annealing temperature and after recooling to 17°K.
Control tests of unirradiated specimens were made after a similar thermal cycling
exposure . The test results obtained are reported and discussed in the following
sections of this report.

* Neutron energies greater than 0.5 MeV or 60 femtoioules.

3
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3 TEST MATERIAL

All test specimens were fabricated from a common lot of material; the same lot was
used in the earlier test programs reported in references 1 and 2. According to the
vendor, the Kroll process was used to produce elemental titanium from rutile (Ti O»)
through chlorination of a mixture of the ore and tar followed by reaction with metallic
magnesium. The resultant sponge was vacuum melted in water cooled copper crucibles
using consumable electrode techniques. Ingot reduction was accomplished through
rolling with break down passes above the beta transus; finishing operations were in the
alpha range. The finished material was annealed at 1300°F (980°K) for two hours

(7.2 x 109 sec) followed by cooling in still air. The test material had the following
chemical composition:

Fe < N H 0

wi% | wi% At% wit% At% wi% At% wit% At%
0.19 0.032 0.13 0.023 0.08 0.006 0.29 0.218 0.65

with the remainder titanium.
4 TEST SPECIMENS

Due to space limitations in the irradiation access port (HB=2) and refrigeration capacity
limitations, the specimen used was a miniaturization of the standard round specimen of
ASTM E 8-66 (ref. 3), with a nominal gage diameter of 0.125 inch (0.318 cm) and a
nominal gage length of 0.5 inch (1.27 cm). The tensile specimen used is shown in
Figure 1. The ratios of the significant parameters are the same as for the standard
ASTM specimen. Unirradiated control specimens were run for each thermal environment
of the irradiation testing program to ensure a common basis for the evaluation of
irradiation effects.
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5 TEST EQUIPMENT AND PROCEDURES

The studies of annealing effects performed in this experiment fall into two general
cases:

1. Specimen irradiated to 6 x 1017 n/cm? at 17°K,
annealed for 1 hour (3.6 x 103 sec) at higher cryogenic
temperatures (78°K and 178°K), re-cooled to 17°K for
1 hour (3.6 x 103 sec) and tested at 17°K.

2. Specimen irradiated to 6 x 1017 n/<:m2 at 17°K,
annealed for 1 hour (3.6 x 103 sec) at higher cryogenic
temperatures and tested at the annealing temperatures.

Unirradiated control specimens were tested after low temperature thermal cycling
identical to that received by the irradiated specimens except that the initial

exposure at 17°K was for one hour (3.6 x 109 sec) rather than the 75 to 110 hour

(2.7 x 109 t0 4.0 x 107 sec) at 17°K required to achieve a fluence of 6 x 1017 n/cm?2
in HB-2.

All testing was conducted, as nearly as feasible, in accordance with American

Society of Testing Materials Specifications ASTM E 184-62 and E 8-66 (ref. 3).
5.1 IRRADIATION TEST LOOP

All testing was performed at the NASA Plum Brook Reactor Facility using the horizontal
beam port on the north face of the reactor core, designated as HB-2, as the irradiation
facility. The testing machines are contained in cryogenic test loops capable of
insertion into the 6" (15.24 cm) diameter beam port. Transfer tables provide the
capability of insertion and withdrawal of the loops from HB=2 and provide rotation

to permit positioning the loops in a radially aligned hot cave for specimen change.
Specimen temperature control is maintained with an 1150 watt refrigerator using

helium as the cryogenic fluid. Detailed descriptions of the test hardware may be

found in references 1 and 2. A drawing of the test loop is shown in Figure 2. The
load control system, shown schematically in Figure 3, permits axial loading of the
specimen in tension or compression with applied forces up to 5000 Ibs (22,240 newtons).

The temperature of the test specimen was controlled by platinum resistance sensors
located in the inlet and outlet refrigerant lines. The validity of this method of control
had been verified in an earlier program by comparison of the readings of these sensors
with especially calibrated thermocouples affixed to a test specimen held in the specimen
location of the test loop at all temperatures of interest, both in-pile and out-of-pile
(refs. 1 and 2).



Control of the irradiation fluence was based on calculations made from the reactor
power level and the control rod bank height. This method was established by
threshold foil measurements made during the earlier programs and is described

in detail in references 1 and 2.

5.2 TENSILE TESTING PROCEDURES

Tensile test methods conformed as nearly as possible to ASTM E 8-66 (ref. 3). The
load rate was monitored, during elastic behavior of the specnmen by controlling the
incremental strain at less than 0.0015 in/in/min (2.5 x 10~ /sec) The load was
monitored with a proving ring type dynamometer calibrated to within two percent

of a National Bureau of Standards certified reed type proving ring. The extensometer
used was classified as ASTM E 83-64T, class B-2 under actual operational conditions.
Extensometers of this classification, while adequate for the determination of the
yield strength of metallic materials, are not normally used for measuring the modulus
of elasticity or deviation from Hooke's Law. Therefore, the modulus values included
in this report should not be considered as absolute values.

The principal departure from the ASTM testing procedures is in specimen geometry,
discussed in Section 5.1.

Ductility parameters, elongation in 4D, and reduction of area were obtained by
post -testing measurements of failed specimens in accordance with paragraphs 26

and 27 of ASTM E 8-66 (ref. 3).

The ny was obtained by the 0.2% offset method .

The fracture stress was obtained by dividing the load at fracture by the cross-sectional
area of the failed specimen at the point of fracture. The data required for correcting
this stress for the tri-axial state of stress during plastic instability are not available;

therefore, this parameter as reported is of questionable reliability (ref. 4, p 246).

The accuracy and calibration of the test system are discussed in references 1 and 2.




6 TEST RESULTS

The test results for the test program are given in Tables | and Il and shown graphically
in Figures 4 and 5.

In both cases, the data from the control specimens are given and plotted with the
results from the irradiated specimens.

6.1 TEST RESULTS FOR SPECIMENS TESTED AT 17°K AFTER POST-IRRADIATION
ANNEALING

The test data obtained from tensile specimens tested at 17°K following annealing at
78°K and 178°K of effects induced by irradiation to 6 x 1017 n/cm2 at 17°K are
shown in Table | and Figure 4.

Examination of Figure 4 shows that the principal annealing effect in the Fi, occurs
between 17°K and 78°K while the effect on the Fy,, appears fairly linear with temperature
ovar the range from 17°K to 178°K. Tnis is also indicated by the convergence at both
end- points of the curves showing the Ff /Fty ratio at the several temperafures The
effect of annealing on the ductility parameters appears to be negligible in this
temperature range.

There was no apparent irradiation effect on the fracture stress.

6.2 TEST RESULTS FOR SPECIMENS TESTED AT THE ANNEALING TEMPERATURE
AFTER POST-IRRADIATION ANNEALING

The test data obtained from tensile specimens tested at the annealing temperature
foHownng post~irradiation annealing at 78°K and 178°K after irradiation to 6 x 10
n/cm at 17°K are shown in Table |l and Figure 5.

Examination of Figure 5 shows that the annealing of the effect of irradiation on the

Ftu is more nearly linear with respect to temperature over the range from 17°K to 178°K
than was noted for the specimen tested at 17°K following similar post-irradiation
anneals. The gradual convergence of the curves plotting the Fy, values for unirradiated
and irradiated specimens with increasing annealing and test temperatures shows an
essentially linear mitigation of the radiation effects on the F;, as a function of
temperature. The curve of the effect of annealing and test temperature on the F;

shows no such convergence; the unirradiated and irradiated specimens produce parallel



curves. This causes a divergence of the Fy,/Fy, ratio curves with increasing
temperature. The cryogenic effects on the ductility parameters appear to be of greater
significance than the minor irradiation induced embrittlement observed in the

curves. As with the specimen post-anneal tested at 17°K, the annealing of

ductility parameters seems slight. The apparent maxima near 80°K, observable

on both ductility parameters, is a cryogenic effect unrelated to irradiation.

Similar peaks have been reported by other investigators working on the cryogenic
behavior of titanium and titanium alloys (ref. 5 and 6).

There was no apparent irradiation effect on the fracture stress.

10




7 ANALYSIS OF TEST RESULTS

The statistical significance of differences between various sample means of several
tensile properties reported in Tables | and Il were calculated using the method
described in Appendix A. Results of these calculations are summarized in tabuiar
form in this appendix. Other properties reported in Tables | and |l were not
statistically analyzed; the ny/Ffu ratio was calculated from values that

were analyzed, the modulus and the fracture stress values were derived from
measurements of insufficient exactness to warrant statistical analysis, and the
reduction of area is of little engineering interest and is a rather imprecise value
used primarily as a measure of material quality. Although in this program only
three specimens were tested for each set of conditions, these analyses show that
in only a few cases is there a significant probability that the testing of additional
specimens might have changed the statistical significance of the results.

Statistical analysis of the data obtained from unirradiated specimens yields the
anticipated results; there is no significant difference in the mechanical properties
of any sample lots tested at 17 °K regardless of prior cryogenic thermal cycling

and statistically significant and large effects of test temperature are observable.
The observed increase in the strength functions due to neutron irradiation are
verified statistically. Substantial residual irradiation strengthening is observable
after post-irradiation annealing when tested at either the annealing temperature or
after recooling to 17°K.

Comparison of the F,  values of the irradiated specimens tested at 17°K following
post-irradiation cmneals at 78°K and 178°K show that the major portion of the
annealing has occurred at temperatures below 78°K; the difference in the values
for this parameter after annealing at 78°K and 178°K is not significant statistically
at the 90% confidence level.

The changes in the F,  values in the same sets of specimens show an essentially
linear response to annealing temperature. Although the net change in the parameter
after annealing at 78°K is of marginal statistical validity at the 90% confidence
level, the plot of arithmetic means (fig. 4) indicates that the annealing effect on
the F,,, is probably uniform over the temperature range investigated. This is one
instance where a larger sample lot might be expected to verify a trend obscured

by data scatter in a small specimen sample.

Statistical comparisons of the elongation data presented in Table | show that annealing
of either irradiated or unirradiated material at 78 or 178°K followed by tests at 17°K
does not significantly change the amount of elongation from that of material tested at
17°K without intermediate anneals at 78 or 178°K. A small (about 3%) but statistically
significant reduction in the amount of elongation occurred in the material irradiated
and tested af 17°K. The slight reductions in elongation recorded for irradiated

1



samples annealed at 78 or 178°K prior to testing at 17°K are not statistically
significant. Very small reductions in elongation in the irradiated samples tested
at the annealing temperatures of 78 and 178°K were recorded. The reduction
at 78° is statistically significant but that at 178° is not.

Variations in test temperatures produce apparent differences in the amount of
reduction of area in Titanium 55A during tensile tests. No apparent
effects of radiation on this property were obtained in this program.

Figure 6 is a graphical presentation of the effects of annealing and test temperatures
on radiation induced changes in the strength parameters of titanium. The mean
difference between groups of irradiated and unirradiated specimens tested under
each set of thermal conditions is plotted with one standard deviation on either side
of the mean indicated. This difference is the residual radiation effect on these
properties representing an increase in strength. The magnitude of the standard
deviation for the F;, data point for the specimens tested at 17°K following post-

irradiation annealing at 178°K might lead to misleading interpretation of these
data in Figure 6. Since, due to theoretical considerations, this plot is not likely

to be concave upwards, the curve must be biased intuitively to provide a meaningful
plot. The data points are not, of course, absolute values; they are measured values
and allowance must be made for experimental uncertainty in evaluation. Such data
can not be handled in a purely statistical manner. Consideration of probable solid
state and metallurgical mechanisms must be given in data interpretation.

In general, the irradiation induced increase in the ultimate tensile strength, while
not as large as that in the yield strength, is annealed more rapidly than the increase
in the yield strength. This is true regardless of testing temperature for annealing

at 78°K and true for the measurement at the annealing temperature of 178°K. This
results in a higher yield to ultimate ratio (0.917) for annealing and testing at 178°K
than for any other test condition.

The absolute decrease in the residual effect on annealing at 178°K and testing at
17°K is about the same in the ultimate tensile strength as in the yield strength.

The residual effect , in any case, regardless of parameter, annealing, or test temperature
is no less than 30 percent of the irradiation induced increase at 17 °K without annealing.

A more surprising result is that the residual effects on the yield strength are, within
the limits of experimental accuracy, independent of the test temperature. In terms

of dislocation theory, this means that defects introduced by the neutron irradiation

at 17°K and remaining at temperatures up to 178°K act as obstacles to plastic flow
that cannot be overcome by thermal fluctuations up to 178°K (ref. 6). Such obstacles
are assumed to be large (greater than 20 x 10710 meters [ref. 7]) and to have stress
fields like those associated with large precipitates or dislocations on intersecting

slip planes. They affect the temperature dependence only indirectly and they might
be expected to form and remain in titanium under the described test conditions.

12




At the same time, with regard to the other residual effects, the combined

effects of recombination of close vacancy~interstitial pairs and interstitial
migration to trapping sites (ref. 8) at temperatures up to 178°K might be

expected to reduce the irradiation effect on the yield strength. And it can be
argued that this diffusion of defects could reduce the irradiation effect on the
ultimate strength even more by eliminating some of the sources of work hardening.
The fact that this is not indicated by the ductility data, which if anything indicate
an increase in hardening sources, at least for tests at 17°K, might be attributed

to the limited precision of these measurements.

There are certain differences between the irradiation annealing effects in

titanium and the irradiation annealing effects reported for aluminum in reference

2. These differences are attributable to differences in the unirradiated materials

and differences in the effects of irradiation before annealing as well as to differences
in annealing phenomena. The most apparent differences between titanium and aluminum
are in the residual irradiation effects. Annealing is much slower in titanium than in
aluminum for a given annealing temperature. Also temperature dependence of the
residual effects is less pronounced than in aluminum. Both of these effects might be
related to the much higher melting point of titanium. A lower defect diffusion

rate would be expected in titanium and the number and distribution of defects

before annealing would be expected to differ from aluminum at least because of

the higher melting point and possibly because of other fundamental differences such
as crystal structures and grain sizes.

Serrated yielding, reported by other investigations at 4°K (ref. 6) was not observed

in the load-elongation curves obtained from cryogenic testing of titanium in this
program. The lowest test temperature in this program, 17°K, is 0.009 of the absolute
melting temperature, that used by Kula in the work reported in reference 6 was 0.002

of the melting temperature. The pronounced increase in resistance to plastic deformation
observed in all body centered cubic and some hexagonal close packed lattices at
extremely low temperatures (ref. 10) may occur between these two temperatures

in titanium.

13
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8 CONCLUDING REMARKS

Tensile testing of commercially pure titanium has been performed under various
test conditions after irradiation to 6 x 1017 n/cm2 (with energies greater than

80 fJ) at 17°K. Tensile test characteristics were obtained at the irradiation
temperature after one hour (3.6 x 10* sec) at 78°K and after one hour at 178°K.
Tensile measurements were also made at the two annealing temperatures following
the same irradiation and annealing. These results along with those from similarly
irradiated specimens without annealing have been compared to results from
unirradiated specimens at the same test temperatures.

Irradiation to 6 x 1017 n/cm? at 17°K, without annealing, increases the

ultimate tensile strength of this material by about 10%, the tensile yield strength

by about 20%, over the values obtained at 17 °K without irradiation. A slight
irradiation induced reduction in the values of the ductility parameters is observable.

Testing at 17 °K following post-irradiation annealing at 78°K showed a distinct
diminution in the irradiation induced increase in the ultimate tensile strength.

The annealing effect on the tensile yield strength of these specimens was less
pronounced. Testing at 17 °K following post~irradiation annealing at 178°K showed
about equal reductions of both of these strength parameters. These data verify the
importance of maintaining the temperature of interest throughout irradiation and testing
periods, and all intervening time between these periods, in cryogenic-irradiation
effect studies.

Testing at the annealing temperatures, following post-irradiation anneals at 78°K and
178°K, showed a substantial temperature dependent reduction on the ultimate tensile
strength with relatively little annealing effect observed on the yield strength.

Residual irradiation induced increases in both strength parameters remained regardless
of the annealing and test temperatures. The smallest remaining residual effect was in
the ultimate tensile strength after annealing at 178°°K and testing at the annealing
temperature. This residual increase was only about 30 percent of the increase
measured at 17 °K without annealing. Other residual increases after annealing at
178°K and measuring at either 178°K or 17°K were equal to about 50 percent of

the effects measured without annealing.

There were little, if any, annealing effects on the ductility parameters, regardless
of the annealing and test temperatures.

There are certain differences between irradiation annealing effects in titanium and
those in aluminum, the most obvious being much larger residual effects in the strength
parameters in titanium than in aluminum. Also, these residual effects are less test-
temperature dependent in titanium than in aluminum.

15
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Strengths (Ksi)

Yield/Ultimate Ratio

Ductilities (percent)

250 ,

T T T | L)
[~ 4150
A
200~
-~ -——— 0
O— O— _g 4125
O— —
150 |~ D A d100
——
5 é.—— —A
< 75
100 - I Range of Values
O Ultimate
— 17 2
poom et L 4
=  Unirradiated
0 I 1 1 ] i 1 0
1.00 T T T T T T
.80 —D— 7
I S — B _
.60 - D Fy/Fiy -
1 ] i | | |
100 i ) 1 1 1 1
80 - 0 Reduction of Area B
B & Elongation in 0.5 in (4D) 7
60 2 Pts. | 7
40} B:"‘ é ~
> S - -
=S
20 -
0 ] 1 ] | | 1
0 100 200 300
Temperature (°K)
EIGURE 4 EFFECTS OF ANNEALING FOLLOWING IRRADIATION

TO 6 x 1017 n/cm2 AT 17°K, TESTED AT 17°K,
TITANIUM 55A (ANNEALED)
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Mean Difference, Annealed and Unannealed Specimen Strengths (Ksi)
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APPENDIX A

SIGNIFICANCE OF THE DIFFERENCE BETWEEN TWO SAMPLE MEANS

To determine if the difference between the means of two groups of samples is statistically

—

significant the null hypothesis, that the two sample means X, and X . are from the same
g yP P 1 2

population with respect to the population mean ¢ , is used. This hypothesis is tested
P

by determining the probability of t, where t is the ratio of )—(l - X2 to an estimate of

the standard error of the difference between the two sample means.

The standard error of the difference between two sample means, Os = is given by:

X~ X,

| 1
PPN e
X=X, Nj N, (1)

where (0 s the standard deviation of the population and Ny and N, are the number of

items in sample one and sample two, respectively.

Since the value of d is unknown, its value must be estimated from the information

A

given by the two somples. This estimate is obtained from:

5 \/Zl Zz
SN, -1 2)

ZX] ond Zx2 can be obtained by:

zxzz x2- (

where X is the parameter value of each of the N items in the sample.

Zx)

(3)



™~
Having determined the value of (I 49 with equations (3) and (2), an estimate of the

standard error of the difference between the two means is obtained from:

(4)

Equation (4)is derived from equation (1).

Finally the desired significance ratio t is obtained from:
2]_ X2
t = 8
Xy~ X;

This value of t and a t-distribution table (available in most statistics textbooks) are used to

obtain the probability (P) of obtaining a value equal to Tt or more. The degrees of

freedom n in this case is:

n = N]-1+N2-1

Since one degree of freedom was lost when Zx]2 was computed about )—(] and another

degree of freedom was lost when Zx22 was computed about )?2.

Tables A-Il, A-Ill and A-1V present a summary of statistical evaluation of the data for

the strength function and the elongation values presented in table | and Il. The group

designation are defined as shown in Table A-l,

A-2




TABLE A-1

GROUP DESIGNATIONS FOR STATISTICAL ANALYSIS

Group Irradiatizon Exg?s7ure , o Temperature, Deg.rees K

n/cm® x 10" Irradiation Interim Test
A 0 * None 17
B 0 * 78 17
C 0 * 178 17
D 6 17 None 17
E 6 17 78 17
F 6 17 178 17
G 0 * 78 78
H 0 * 178 178
| 6 17 78 78
J 6 17 178 178

*All unirradiated specimens stabilized at 17°K prior to warm-up to interim temperature

A-3
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ABSTRACT

Commercially pure titanium (Titanium 55A - Annealed) was tested in tension
after posf urad:ahon annealing ot 78°K and 178°K following irradiation to

6 x 1017 n/cm (E>» 0.5 MeV, 80 fJ)) at 17°K. Tests were performed both at
the annealing temperature and after re-cooling to 17°K. Post=irradiation
annealing at 78°K or 178°K prior to testing at either the annealing temperature
or at 17°K substantially reduced the radiation induced strength increases but
did not appreciably affect ductility properties.



